Driver License

Automatically extract data from Driver Licenses.

Mindee’s Driver License OCR API uses deep learning to automatically, accurately, and instantaneously parse your documents details. In a few seconds, the API extracts a set of data from your PDFs or photos of driver licenses, including:

  • Country Code
  • State
  • ID
  • Category
  • Last Name
  • First Name
  • Date of Birth
  • Place of Birth
  • Expiry Date
  • Issued Date
  • Issuing Authority
  • MRZ
  • DD Number

The Driver License OCR API supports documents from US and all EU countries. The documents from other nationalities and states are not supported with this model.


Set up the API

📘

Before making any API calls, you need to have created your API key.

  1. To test your API, you can use the sample document provided below.


  1. Access your Driver License OCR API by clicking on the corresponding product card in the Document Catalog


  1. From the left navigation, go to documentation > API Reference, you'll find sample code in popular languages and command line.
from mindee import Client, AsyncPredictResponse, product

# Init a new client
mindee_client = Client(api_key="my-api-key-here")

# Add the corresponding endpoint (document). Set the account_name to "mindee" if you are using OTS.
my_endpoint = mindee_client.create_endpoint(
    account_name="mindee",
    endpoint_name="driver_license",
    version="1"
)

# Load a file from disk
input_doc = mindee_client.source_from_path("/path/to/the/file.ext")

# Parse the file.
# The endpoint must be specified since it cannot be determined from the class.
result: AsyncPredictResponse = mindee_client.enqueue_and_parse(
    product.GeneratedV1,
    input_doc,
    endpoint=my_endpoint
)

# Print a brief summary of the parsed data
print(result.document)

# # Iterate over all the fields in the document
# for field_name, field_values in result.document.inference.prediction.fields.items():
#     print(field_name, "=", field_values)
const mindee = require("mindee");
// for TS or modules:
// import * as mindee from "mindee";

// Init a new client
const mindeeClient = new mindee.Client({ apiKey: "my-api-key-here" });

// Load a file from disk
const inputSource = mindeeClient.docFromPath("/path/to/the/file.ext");

// Create a custom endpoint for your product
const customEndpoint = mindeeClient.createEndpoint(
  "driver_license",
  "mindee",
  "1" // Defaults to "1"
);

// Parse the file asynchronously.
const asyncApiResponse = mindeeClient.enqueueAndParse(
  mindee.product.GeneratedV1,
  inputSource,
  { endpoint: customEndpoint }
);

// Handle the response Promise
asyncApiResponse.then((resp) => {
  // print a string summary
  console.log(resp.document.toString());
});
using Mindee;
using Mindee.Input;
using Mindee.Http;
using Mindee.Product.Generated;

string apiKey = "my-api-key-here";
string filePath = "/path/to/the/file.ext";

// Construct a new client
MindeeClient mindeeClient = new MindeeClient(apiKey);

// Load an input source as a path string
// Other input types can be used, as mentioned in the docs
var inputSource = new LocalInputSource(filePath);

// Set the endpoint configuration
CustomEndpoint endpoint = new CustomEndpoint(
    endpointName: "driver_license",
    accountName: "mindee",
    version: "1"
);

// Call the product asynchronously with auto-polling
var response = await mindeeClient
    .EnqueueAndParseAsync<GeneratedV1>(inputSource, endpoint);

// Print a summary of all the predictions
System.Console.WriteLine(response.Document.ToString());

// Print only the document-level predictions
// System.Console.WriteLine(response.Document.Inference.Prediction.ToString());
require 'mindee'

# Init a new client
mindee_client = Mindee::Client.new(api_key: 'my-api-key-here')

# Load a file from disk
input_source = mindee_client.source_from_path('/path/to/the/file.ext')

# Initialize a custom endpoint for this product
custom_endpoint = mindee_client.create_endpoint(
  account_name: 'mindee',
  endpoint_name: 'driver_license',
  version: '1'
)

# Parse the file
result = mindee_client.enqueue_and_parse(
  input_source,
  Mindee::Product::Generated::GeneratedV1,
  endpoint: custom_endpoint
)

# Print a full summary of the parsed data in RST format
puts result.document
import com.mindee.MindeeClient;
import com.mindee.input.LocalInputSource;
import com.mindee.parsing.common.AsyncPredictResponse;
import com.mindee.product.generated.GeneratedV1;
import com.mindee.http.Endpoint;
import java.io.File;
import java.io.IOException;

public class SimpleMindeeClient {

  public static void main(String[] args) throws IOException, InterruptedException {
    String apiKey = "my-api-key-here";
    String filePath = "/path/to/the/file.ext";

    // Init a new client
    MindeeClient mindeeClient = new MindeeClient(apiKey);

    // Load a file from disk
    LocalInputSource inputSource = new LocalInputSource(new File(filePath));

    // Configure the endpoint
    Endpoint endpoint = new Endpoint(
        "driver_license",
        "mindee",
        "1"
    );

    // Parse the file asynchronously
    AsyncPredictResponse<GeneratedV1> response = mindeeClient.enqueueAndParse(
        GeneratedV1.class,
        endpoint,
        inputSource
    );

    // Print a summary of the response
    System.out.println(response.toString());

    // Print a summary of the predictions
//  System.out.println(response.getDocumentObj().toString());

    // Print the document-level predictions
//    System.out.println(response.getDocumentObj().getInference().getPrediction().toString());

    // Print the page-level predictions
//    response.getDocumentObj().getInference().getPages().forEach(
//        page -> System.out.println(page.toString())
//    );
  }

}
API_KEY='my-api-key-here'
ACCOUNT='mindee'
ENDPOINT='driver_license'
VERSION='1'
FILE_PATH='/path/to/your/file.png'

# Maximum amount of retries to get the result of a queue
MAX_RETRIES=10

# Delay between requests
DELAY=6

# Enqueue the document for async parsing
QUEUE_RESULT=$(curl -sS --request POST \
  -H "Authorization: Token $API_KEY" \
  -H "Content-Type: multipart/form-data" \
  -F "document=@$FILE_PATH" \
  "https://api.mindee.net/v1/products/$ACCOUNT/$ENDPOINT/v$VERSION/predict_async")

# Status code sent back from the server
STATUS_CODE=$(echo "$QUEUE_RESULT" | grep -oP "[\"|']status_code[\"|']:[\s][\"|']*[a-zA-Z0-9-]*" | rev | cut --complement -f2- -d" " | rev)

# Check that the document was properly queued
if [ -z "$STATUS_CODE" ] || [ "$STATUS_CODE" -gt 399 ] || [ "$STATUS_CODE" -lt 200 ]
then
  if [ -z "$STATUS_CODE" ]
  then
    echo "Request couldn't be processed."
    exit 1
  fi
  echo "Error $STATUS_CODE was returned by API during enqueuing. "

  # Print the additional details, if there are any:
  ERROR=$(echo "$QUEUE_RESULT" | grep -oP "[\"|']error[\"|']:[\s]\{[^\}]*" | rev | cut --complement -f2- -d"{" | rev)
  if [ -z "$ERROR" ]
  then
    exit 1
  fi

  # Details on the potential error:
  ERROR_CODE=$(echo "$ERROR" | grep -oP "[\"|']code[\"|']:[\s]\"[^(\"|\')]*" | rev | cut --complement -f2- -d"\"" | rev)
  MESSAGE=$(echo "$QUEUE_RESULT" | grep -oP "[\"|']message[\"|']:[\s]\"[^(\"|\')]*" | rev | cut --complement -f2- -d"\"" | rev)
  DETAILS=$(echo "$QUEUE_RESULT" | grep -oP "[\"|']details[\"|']:[\s]\"[^(\"|\')]*" | rev | cut --complement -f2- -d"\"" | rev)
  echo "This was the given explanation:"
  echo "-------------------------"
  echo "Error Code: $ERROR_CODE"
  echo "Message: $MESSAGE"
  echo "Details: $DETAILS"
  echo "-------------------------"
  exit 1
else

  echo "File sent, starting to retrieve from server..."

  # Get the document's queue ID
  QUEUE_ID=$(echo "$QUEUE_RESULT" | grep -oP "[\"|']id[\"|']:[\s][\"|'][a-zA-Z0-9-]*" | rev | cut --complement -f2- -d"\"" | rev)

  # Amount of attempts to retrieve the parsed document were made
  TIMES_TRIED=1

  # Try to fetch the file until we get it, or until we hit the maximum amount of retries
  while [ "$TIMES_TRIED" -lt "$MAX_RETRIES" ]
  do
    # Wait for a bit at each step
    sleep $DELAY

    # Note: we use -L here because the location of the file might be behind a redirection
    PARSED_RESULT=$(curl -sS -L \
      -H "Authorization: Token $API_KEY" \
      "https://api.mindee.net/v1/products/$ACCOUNT/$ENDPOINT/v$VERSION/documents/queue/$QUEUE_ID")

    # Isolating the job (queue) & the status to monitor the document
    JOB=$(echo "$PARSED_RESULT" | grep -ioP "[\"|']job[\"|']:[\s]\{[^\}]*" | rev | cut --complement -f2- -d"{" | rev)
    QUEUE_STATUS=$(echo "$JOB" | grep -ioP "[\"|']status[\"|']:[\s][\"|'][a-zA-Z0-9-]*" | rev | cut --complement -f2- -d"\"" | rev)
    if [ "$QUEUE_STATUS" = "completed" ]
    then
      # Print the result
      echo "$PARSED_RESULT"

      # Optional: isolate the document:
      # DOCUMENT=$(echo "$PARSED_RESULT" | grep -ioP "[\"|']document[\"|']:[\s].*([\"|']job[\"|'])" | rev | cut -f2- -d"," | rev)
      # echo "{$DOCUMENT}"

      # Remark: on compatible shells, fields can also be extracted through the use of tools like jq:
      # DOCUMENT=$(echo "$PARSED_RESULT" | jq '.["document"]')
      exit 0
    fi
    TIMES_TRIED=$((TIMES_TRIED+1))
  done
fi

echo "Operation aborted, document not retrieved after $TIMES_TRIED tries"
exit 1
<?php

use Mindee\Client;
use Mindee\Product\Generated\GeneratedV1;
use Mindee\Input\PredictMethodOptions;

// Init a new client
$mindeeClient = new Client("my-api-key-here");

// Load a file from disk
$inputSource = $mindeeClient->sourceFromPath("/path/to/the/file.ext");

// Create a custom endpoint
$customEndpoint = $mindeeClient->createEndpoint(
    "driver_license",
    "mindee",
    "1"
);

// Add the custom endpoint to the prediction options.
$predictOptions = new PredictMethodOptions();
$predictOptions->setEndpoint($customEndpoint);

// Parse the file
$apiResponse = $mindeeClient->enqueueAndParse(GeneratedV1::class, $inputSource, $predictOptions);

echo strval($apiResponse->document);

  • Replace my-api-key-here with your new API key, or use the "select an API key" feature and it will be filled automatically.
  • Copy and paste the sample code of your desired choice in your application, code environment or terminal.
  • Replace /path/to/my/file with the path to your document.

❗️

Always remember to replace your API key!

  1. Run your code. You will receive a JSON response with your document details.

API Response

Here is the full JSON response you get when you call the API:

{
  "api_request": {
    "error": {},
    "resources": [
      "document",
      "job"
    ],
    "status": "success",
    "status_code": 200,
    "url": "https://api.mindee.net/v1/products/mindee/driver_license/v1/documents/4c95af66-341c-4021-bdb7-d38fa2bbee16"
  },
  "document": {
    "id": "4c95af66-341c-4021-bdb7-d38fa2bbee16",
    "inference": {
      "extras": {},
      "finished_at": "2024-11-18T15:06:22.437000",
      "is_rotation_applied": true,
      "pages": [
        {
          "extras": {},
          "id": 0,
          "orientation": {
            "value": 0
          },
          "prediction": {}
        }
      ],
      "prediction": {
        "category": {
          "page_id": 0,
          "polygon": [
            [
              0.386,
              0.251
            ],
            [
              0.492,
              0.251
            ],
            [
              0.492,
              0.282
            ],
            [
              0.386,
              0.282
            ]
          ],
          "value": "D"
        },
        "country_code": {
          "page_id": 0,
          "polygon": [
            [
              0.039,
              0.045
            ],
            [
              0.421,
              0.045
            ],
            [
              0.421,
              0.147
            ],
            [
              0.039,
              0.147
            ]
          ],
          "value": "USA"
        },
        "date_of_birth": {
          "page_id": 0,
          "polygon": [
            [
              0.732,
              0.322
            ],
            [
              0.916,
              0.322
            ],
            [
              0.916,
              0.372
            ],
            [
              0.732,
              0.372
            ]
          ],
          "value": "1957-02-01"
        },
        "dd_number": {
          "page_id": 0,
          "polygon": [
            [
              0.383,
              0.85
            ],
            [
              0.658,
              0.85
            ],
            [
              0.658,
              0.989
            ],
            [
              0.383,
              0.989
            ]
          ],
          "value": "1234567890123456"
        },
        "expiry_date": {
          "page_id": 0,
          "polygon": [
            [
              0.445,
              0.635
            ],
            [
              0.631,
              0.635
            ],
            [
              0.631,
              0.68
            ],
            [
              0.445,
              0.68
            ]
          ],
          "value": "2018-02-01"
        },
        "first_name": {
          "page_id": 0,
          "polygon": [
            [
              0.384,
              0.452
            ],
            [
              0.502,
              0.452
            ],
            [
              0.502,
              0.491
            ],
            [
              0.384,
              0.491
            ]
          ],
          "value": "Jelani"
        },
        "id": {
          "page_id": 0,
          "polygon": [
            [
              0.723,
              0.259
            ],
            [
              0.914,
              0.259
            ],
            [
              0.914,
              0.311
            ],
            [
              0.723,
              0.311
            ]
          ],
          "value": "D12345678"
        },
        "issued_date": {
          "page_id": 0,
          "polygon": [
            [
              0.736,
              0.635
            ],
            [
              0.922,
              0.635
            ],
            [
              0.922,
              0.68
            ],
            [
              0.736,
              0.68
            ]
          ],
          "value": "2013-01-10"
        },
        "issuing_authority": {
          "page_id": 0,
          "polygon": [],
          "value": null
        },
        "last_name": {
          "page_id": 0,
          "polygon": [
            [
              0.384,
              0.395
            ],
            [
              0.521,
              0.395
            ],
            [
              0.521,
              0.437
            ],
            [
              0.384,
              0.437
            ]
          ],
          "value": "Sample"
        },
        "mrz": {
          "page_id": 0,
          "polygon": [],
          "value": null
        },
        "place_of_birth": {
          "page_id": 0,
          "polygon": [],
          "value": null
        },
        "state": {
          "page_id": 0,
          "polygon": [
            [
              0.508,
              0.546
            ],
            [
              0.542,
              0.546
            ],
            [
              0.542,
              0.579
            ],
            [
              0.508,
              0.579
            ]
          ],
          "value": "AZ"
        }
      },
      "processing_time": 6.041,
      "product": {
        "features": [
          "country_code",
          "state",
          "id",
          "category",
          "last_name",
          "first_name",
          "date_of_birth",
          "place_of_birth",
          "expiry_date",
          "issued_date",
          "issuing_authority",
          "mrz",
          "dd_number"
        ],
        "name": "mindee/driver_licence",
        "type": "standard",
        "version": "1.0"
      },
      "started_at": "2024-11-18T15:06:16.112000"
    },
    "n_pages": 1,
    "name": "arizona_h (1).jpg"
  },
  "job": {
    "available_at": "2024-11-18T15:06:22.450000",
    "error": {},
    "id": "f235e482-9f0a-4469-bdcf-085d39263389",
    "issued_at": "2024-11-18T15:06:16.112000",
    "status": "completed"
  }
}

You can find the prediction within the prediction key found in  document > inference > prediction for document-level predictions: it contains the different fields extracted at the document level, meaning that for multi-pages PDFs, we reconstruct a single object using all the pages.

Each predicted field may contain one or several values including:

  • polygon highlighting the information location
  • page_id where the information was found (document level only)

Extracted data

Using the above document example the following are the basic fields that can be extracted.


Country Code

  • country_code: The alpha-3 ISO 3166 code of the country where the driver license was issued.
{
  "country_code": {
    "page_id": 0,
    "polygon": [
      [
        0.039,
        0.045
      ],
      [
        0.421,
        0.045
      ],
      [
        0.421,
        0.147
      ],
      [
        0.039,
        0.147
      ]
    ],
    "value": "USA"
  }
}


State

  • state: second part of the ISO 3166-2 code consisting in 2 letters indicating the US State.
{
  "state": {
    "page_id": 0,
    "polygon": [
      [
        0.508,
        0.546
      ],
      [
        0.542,
        0.546
      ],
      [
        0.542,
        0.579
      ],
      [
        0.508,
        0.579
      ]
    ],
    "value": "AZ"
  }
}

ID

  • id: The unique identifier of the driver license.
{
  "id": {
    "page_id": 0,
    "polygon": [
      [
        0.723,
        0.259
      ],
      [
        0.914,
        0.259
      ],
      [
        0.914,
        0.311
      ],
      [
        0.723,
        0.311
      ]
    ],
    "value": "D12345678"
  }
}

Category

  • category: The category or class of the driver license..
{
  "category": {
    "page_id": 0,
    "polygon": [
      [
        0.386,
        0.251
      ],
      [
        0.492,
        0.251
      ],
      [
        0.492,
        0.282
      ],
      [
        0.386,
        0.282
      ]
    ],
    "value": "D"
  }
}

Last Name

  • last_name: The last name of the driver license Holder.

First Name

  • first_name: The first name of the driver license holder.
{
  "first_name": {
    "page_id": 0,
    "polygon": [
      [
        0.384,
        0.452
      ],
      [
        0.502,
        0.452
      ],
      [
        0.502,
        0.491
      ],
      [
        0.384,
        0.491
      ]
    ],
    "value": "Jelani"
  }
}

Date of Birth

  • date_of_birth: The date of birth of the driver license holder.
{
  "date_of_birth": {
    "page_id": 0,
    "polygon": [
      [
        0.732,
        0.322
      ],
      [
        0.916,
        0.322
      ],
      [
        0.916,
        0.372
      ],
      [
        0.732,
        0.372
      ]
    ],
    "value": "1957-02-01"
  }
}

Place of Birth

  • place_of_birth: The place of birth of the driver license holder.
{
  "place_of_birth": {
    "page_id": 0,
    "polygon": [],
    "value": null
  }
}


Expiry Date

  • expiry_date: The expiry date of the driver license.
{
  "expiry_date": {
    "page_id": 0,
    "polygon": [
      [
        0.445,
        0.635
      ],
      [
        0.631,
        0.635
      ],
      [
        0.631,
        0.68
      ],
      [
        0.445,
        0.68
      ]
    ],
    "value": "2018-02-01"
  }
}

Issued Date

  • issued_date: The date the driver license was issued.
{
  "issued_date": {
    "page_id": 0,
    "polygon": [
      [
        0.736,
        0.635
      ],
      [
        0.922,
        0.635
      ],
      [
        0.922,
        0.68
      ],
      [
        0.736,
        0.68
      ]
    ],
    "value": "2013-01-10"
  }
}

Issuing Authority

  • issuing_authority: The authority that issued the driver license.
{
  "issuing_authority": {
    "page_id": 0,
    "polygon": [],
    "value": null
  }
}

MRZ

  • mrz: The Machine Readable Zone (MRZ) of the driver license.
{
  "mrz": {
    "page_id": 0,
    "polygon": [],
    "value": null
  }
}

DD Number

  • dd_number: The DD Number of the driver license.
{
  "dd_number": {
    "page_id": 0,
    "polygon": [
      [
        0.383,
        0.85
      ],
      [
        0.658,
        0.85
      ],
      [
        0.658,
        0.989
      ],
      [
        0.383,
        0.989
      ]
    ],
    "value": "1234567890123456"
  }
}

Questions?

Slack Logo Icon  Join our Slack