FR Carte Grise OCR Java
The Java OCR SDK supports the Carte Grise API.
Using the sample below, we are going to illustrate how to extract the data that we want using the OCR SDK.
Quick-Start
import com.mindee.MindeeClient;
import com.mindee.input.LocalInputSource;
import com.mindee.parsing.common.PredictResponse;
import com.mindee.product.fr.cartegrise.CarteGriseV1;
import java.io.File;
import java.io.IOException;
public class SimpleMindeeClient {
public static void main(String[] args) throws IOException {
String apiKey = "my-api-key";
String filePath = "/path/to/the/file.ext";
// Init a new client
MindeeClient mindeeClient = new MindeeClient(apiKey);
// Load a file from disk
LocalInputSource inputSource = new LocalInputSource(filePath);
// Parse the file
PredictResponse<CarteGriseV1> response = mindeeClient.parse(
CarteGriseV1.class,
inputSource
);
// Print a summary of the response
System.out.println(response.toString());
// Print a summary of the predictions
// System.out.println(response.getDocument().toString());
// Print the document-level predictions
// System.out.println(response.getDocument().getInference().getPrediction().toString());
// Print the page-level predictions
// response.getDocument().getInference().getPages().forEach(
// page -> System.out.println(page.toString())
// );
}
}
Output (RST):
########
Document
########
:Mindee ID: 4443182b-57c1-4426-a288-01b94f226e84
:Filename: default_sample.jpg
Inference
#########
:Product: mindee/carte_grise v1.1
:Rotation applied: Yes
Prediction
==========
:a: AB-123-CD
:b: 1998-01-05
:c1: DUPONT YVES
:c3: 27 RUE DES ROITELETS 59169 FERIN LES BAINS FRANCE
:c41: 2 DELAROCHE
:c4a: EST LE PROPRIETAIRE DU VEHICULE
:d1:
:d3: MODELE
:e: VFS1V2009AS1V2009
:f1: 1915
:f2: 1915
:f3: 1915
:g: 3030
:g1: 1307
:i: 2009-12-04
:j: N1
:j1: VP
:j2: AA
:j3: CI
:p1: 1900
:p2: 90
:p3: GO
:p6: 6
:q: 006
:s1: 5
:s2:
:u1: 77
:u2: 3000
:v7: 155
:x1: 2011-07-06
:y1: 17835
:y2:
:y3: 0
:y4: 4
:y5: 2.5
:y6: 178.35
:Formula Number: 2009AS05284
:Owner's First Name: YVES
:Owner's Surname: DUPONT
:MRZ Line 1:
:MRZ Line 2: CI<<MARQUES<<<<<<<MODELE<<<<<<<2009AS0528402
Page Predictions
================
Page 0
------
:a: AB-123-CD
:b: 1998-01-05
:c1: DUPONT YVES
:c3: 27 RUE DES ROITELETS 59169 FERIN LES BAINS FRANCE
:c41: 2 DELAROCHE
:c4a: EST LE PROPRIETAIRE DU VEHICULE
:d1:
:d3: MODELE
:e: VFS1V2009AS1V2009
:f1: 1915
:f2: 1915
:f3: 1915
:g: 3030
:g1: 1307
:i: 2009-12-04
:j: N1
:j1: VP
:j2: AA
:j3: CI
:p1: 1900
:p2: 90
:p3: GO
:p6: 6
:q: 006
:s1: 5
:s2:
:u1: 77
:u2: 3000
:v7: 155
:x1: 2011-07-06
:y1: 17835
:y2:
:y3: 0
:y4: 4
:y5: 2.5
:y6: 178.35
:Formula Number: 2009AS05284
:Owner's First Name: YVES
:Owner's Surname: DUPONT
:MRZ Line 1:
:MRZ Line 2: CI<<MARQUES<<<<<<<MODELE<<<<<<<2009AS0528402
Field Types
Standard Fields
These fields are generic and used in several products.
BaseField
Each prediction object contains a set of fields that inherit from the generic BaseField
class.
A typical BaseField
object will have the following attributes:
- confidence (
Double
): the confidence score of the field prediction. - boundingBox (
Polygon
): contains exactly 4 relative vertices (points) coordinates of a right rectangle containing the field in the document. - polygon (
Polygon
): contains the relative vertices coordinates (polygon
extendsList<Point>
) of a polygon containing the field in the image. - pageId (
Integer
): the ID of the page, alwaysnull
when at document-level.
Note: A
Point
simply refers to a List ofDouble
.
Aside from the previous attributes, all basic fields have access to a custom toString
method that can be used to print their value as a string.
StringField
The text field StringField
extends BaseField
, but also implements:
- value (
String
): corresponds to the field value. - rawValue (
String
): corresponds to the raw value as it appears on the document.
DateField
The date field DateField
extends BaseField
, but also implements:
- value (
LocalDate
): an accessible representation of the value as a Java object. Can benull
.
Attributes
The following fields are extracted for Carte Grise V1:
a
a: The vehicle's license plate number.
System.out.println(result.getDocument().getInference().getPrediction().getA().value);
b
b: The vehicle's first release date.
System.out.println(result.getDocument().getInference().getPrediction().getB().value);
c1
c1: The vehicle owner's full name including maiden name.
System.out.println(result.getDocument().getInference().getPrediction().getC1().value);
c3
c3: The vehicle owner's address.
System.out.println(result.getDocument().getInference().getPrediction().getC3().value);
c41
c41: Number of owners of the license certificate.
System.out.println(result.getDocument().getInference().getPrediction().getC41().value);
c4a
c4A: Mentions about the ownership of the vehicle.
System.out.println(result.getDocument().getInference().getPrediction().getC4A().value);
d1
d1: The vehicle's brand.
System.out.println(result.getDocument().getInference().getPrediction().getD1().value);
d3
d3: The vehicle's commercial name.
System.out.println(result.getDocument().getInference().getPrediction().getD3().value);
e
e: The Vehicle Identification Number (VIN).
System.out.println(result.getDocument().getInference().getPrediction().getE().value);
f1
f1: The vehicle's maximum admissible weight.
System.out.println(result.getDocument().getInference().getPrediction().getF1().value);
f2
f2: The vehicle's maximum admissible weight within the license's state.
System.out.println(result.getDocument().getInference().getPrediction().getF2().value);
f3
f3: The vehicle's maximum authorized weight with coupling.
System.out.println(result.getDocument().getInference().getPrediction().getF3().value);
Formula Number
formulaNumber: The document's formula number.
System.out.println(result.getDocument().getInference().getPrediction().getFormulaNumber().value);
g
g: The vehicle's weight with coupling if tractor different than category M1.
System.out.println(result.getDocument().getInference().getPrediction().getG().value);
g1
g1: The vehicle's national empty weight.
System.out.println(result.getDocument().getInference().getPrediction().getG1().value);
i
i: The car registration date of the given certificate.
System.out.println(result.getDocument().getInference().getPrediction().getI().value);
j
j: The vehicle's category.
System.out.println(result.getDocument().getInference().getPrediction().getJ().value);
j1
j1: The vehicle's national type.
System.out.println(result.getDocument().getInference().getPrediction().getJ1().value);
j2
j2: The vehicle's body type (CE).
System.out.println(result.getDocument().getInference().getPrediction().getJ2().value);
j3
j3: The vehicle's body type (National designation).
System.out.println(result.getDocument().getInference().getPrediction().getJ3().value);
MRZ Line 1
mrz1: Machine Readable Zone, first line.
System.out.println(result.getDocument().getInference().getPrediction().getMrz1().value);
MRZ Line 2
mrz2: Machine Readable Zone, second line.
System.out.println(result.getDocument().getInference().getPrediction().getMrz2().value);
Owner's First Name
ownerFirstName: The vehicle's owner first name.
System.out.println(result.getDocument().getInference().getPrediction().getOwnerFirstName().value);
Owner's Surname
ownerSurname: The vehicle's owner surname.
System.out.println(result.getDocument().getInference().getPrediction().getOwnerSurname().value);
p1
p1: The vehicle engine's displacement (cm3).
System.out.println(result.getDocument().getInference().getPrediction().getP1().value);
p2
p2: The vehicle's maximum net power (kW).
System.out.println(result.getDocument().getInference().getPrediction().getP2().value);
p3
p3: The vehicle's fuel type or energy source.
System.out.println(result.getDocument().getInference().getPrediction().getP3().value);
p6
p6: The vehicle's administrative power (fiscal horsepower).
System.out.println(result.getDocument().getInference().getPrediction().getP6().value);
q
q: The vehicle's power to weight ratio.
System.out.println(result.getDocument().getInference().getPrediction().getQ().value);
s1
s1: The vehicle's number of seats.
System.out.println(result.getDocument().getInference().getPrediction().getS1().value);
s2
s2: The vehicle's number of standing rooms (person).
System.out.println(result.getDocument().getInference().getPrediction().getS2().value);
u1
u1: The vehicle's sound level (dB).
System.out.println(result.getDocument().getInference().getPrediction().getU1().value);
u2
u2: The vehicle engine's rotation speed (RPM).
System.out.println(result.getDocument().getInference().getPrediction().getU2().value);
v7
v7: The vehicle's CO2 emission (g/km).
System.out.println(result.getDocument().getInference().getPrediction().getV7().value);
x1
x1: Next technical control date.
System.out.println(result.getDocument().getInference().getPrediction().getX1().value);
y1
y1: Amount of the regional proportional tax of the registration (in euros).
System.out.println(result.getDocument().getInference().getPrediction().getY1().value);
y2
y2: Amount of the additional parafiscal tax of the registration (in euros).
System.out.println(result.getDocument().getInference().getPrediction().getY2().value);
y3
y3: Amount of the additional CO2 tax of the registration (in euros).
System.out.println(result.getDocument().getInference().getPrediction().getY3().value);
y4
y4: Amount of the fee for managing the registration (in euros).
System.out.println(result.getDocument().getInference().getPrediction().getY4().value);
y5
y5: Amount of the fee for delivery of the registration certificate in euros.
System.out.println(result.getDocument().getInference().getPrediction().getY5().value);
y6
y6: Total amount of registration fee to be paid in euros.
System.out.println(result.getDocument().getInference().getPrediction().getY6().value);
Questions?
Updated 4 months ago