Synchronous Prediction
The Synchronous Prediction endpoint is one of the two ways to extract information from your document in real time. Via HTTPS, you send your document (binary file, base64, or URL) and receive the prediction in the response body as a JSON.
Synchronous Prediction endpoint is not available for all document parsing APIs, instead, you may use the Asynchronous Prediction endpoint. Check your API Documentation on Mindee's Platform.
Send my document
URL
POST
/predicthttps://api.mindee.net/v1/products/mindee/
<name>
/<version>
/predict
To make synchronous predictions, make sure your document parsing API supports synchronous mode, then select:
<name>
refers to the name and selected version of your Off-the-shelf APIs.<version>
refers to the API version as described in your API Documentation. A new version may not be fully backward compatible and bring new features and better performance.
Prepare payload
The Prediction endpoint can handle three types of payload in order to send your document:
- a binary file
- a base64 encoded file
- a URL
See Document inputs for more information on supported files.
Binary File
Use a multipart/form-data
encoding to send your document:
import requests
url = "https://api.mindee.net/v1/products/mindee/<api_name>/<api_version>/predict"
with open("/path/to/my/file", "rb") as myfile:
files = {"document": myfile}
headers = {"Authorization": "Token <my-api-key-here>"}
response = requests.post(url, files=files, headers=headers)
print(response.text)
curl -X POST
https://api.mindee.net/v1/products/mindee/<api_name>/<api_version>/predict
-H 'Authorization: Token <my-api-key-here>'
-F document=@/path/to/your/file.png
using System;
using System.IO;
using System.Net.Http;
using System.Net.Http.Headers;
class Program
{
static void Main(string[] args)
{
var url = "https://api.mindee.net/v1/products/mindee/<api_name>/<api_version>/predict";
var filePath = @"/path/to/my/file";
var token = "my-api-key-here";
var file = File.OpenRead(filePath);
var streamContent = new StreamContent(file);
var imageContent = new ByteArrayContent(streamContent.ReadAsByteArrayAsync().Result);
imageContent.Headers.ContentType = MediaTypeHeaderValue.Parse("multipart/form-data");
var form = new MultipartFormDataContent();
form.Add(imageContent, "document", Path.GetFileName(filePath));
var httpClient = new HttpClient();
httpClient.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Token", token);
var response = httpClient.PostAsync(url, form).Result;
Console.WriteLine(response.Content.ReadAsStringAsync().Result);
}
}
Base64 Encoded File
Prepare a JSON payload:
{
"document": "/9j......"
}
Send your request with an application/json
encoding:
curl -X POST \
https://api.mindee.net/v1/products/mindee/<api_name>/<api_version>/predict \
-H 'Authorization: Token <my-api-key-here>' \
-H 'Content-Type: application/json' \
-d 'document="/9j..."'
Public URL
Prepare a JSON payload with the URL included. Only valid public HTTPS links are accepted:
{
"document": "https://mydomain.com/my_file.pdf"
}
Send your request with an application/json
encoding:
curl -X POST \
https://api.mindee.net/v1/products/mindee/<api_name>/<api_version>/predict \
-H 'Authorization: Token <my-api-key-here>' \
-H 'Content-Type: application/json' \
-d '{"document":"https://mydomain.com/my_file.pdf"}'
Get my prediction
See Endpoints for general description of Mindee's REST API response format.
JSON Response
When calling the prediction endpoint, the parsed information from your documents can be found in the document
key.
{
"api_request": { .. },
"document": {
"id": "ac668055-e7db-48f2-b81f-e5ba9a6a6b8f",
"name": "myfile.pdf",
"n_pages": 2,
"inference": {
"started_at": "2021-03-24T09:14:27",
"finished_at": "2021-03-24T09:14:28",
"processing_time": 1.087,
"is_rotation_applied": true,
"extras": {},
"prediction": { .. },
"pages": [
{
"id": 0,
"orientation": {"value": 0},
"extras": {},
"prediction": { .. }
},
{
"id": 1,
"orientation": {"value": 0},
"extras": {},
"prediction": { .. }
}
]
}
}
}
Document
Describes the uploaded document
key | type | description |
---|---|---|
id | string | a unique identifier |
name | string | the filename |
n_pages | number | the number of pages |
inference | object | a JSON object with the content of your inference (prediction) |
Document > Inference
Contains the whole inference data (predictions)
key | type | description |
---|---|---|
started_at | string | the date & time the inference has started in ISO 8601 format |
finished_at | string | the date & time the inference was finished in ISO 8601 format |
processing_time | number | the request processing time in seconds |
is_rotation_applied | boolean or null | true: polygons are already rotated given the page orientation false: polygons are never rotated null: the API has no orientation information |
extras | object | a JSON object with document-level extras predictions |
prediction | object | a JSON object with the document-level API prediction |
pages | list[object] | a JSON object with the page-level inference data |
Document > Inference > Pages[ ]
Contains the page-level specific inference data (predictions)
key | type | description |
---|---|---|
id | number | the page index |
orientation.value | number | the clockwise rotation to apply to get the page upright Examples: 0, 90, 180, 270 |
extras | object | a JSON object with page-level extras predictions Example: the Cropper feature |
prediction | object | a JSON object with the page-level API prediction |
Prediction example
Each API can describe several fields within its prediction
object. Depending on the field properties, you will find values, a confidence score or polygons.
{
"prediction": {
"locale": {
"country": "CA",
"currency": "CAD",
"language": "en",
"value": "en-CA",
"confidence": 0.85
},
"date": {
"value": "2020-07-03",
"confidence": 0.99,
"polygon": [[0.273, 0.355], [0.289, 0.355], [0.289, 0.373], [0.273, 0.373]]
},
"total_incl": {
"value": 14.32,
"confidence": 0.98,
"polygon": [[0.581, 0.485], [0.696, 0.485], [0.696, 0.503], [0.581, 0.503]]
}
}
}
Success
To know more about your document parsing API response, especially the prediction object's structure, you can access the Documentation part of your API on Mindee's platform.
Questions?
Join our Slack
Updated 10 months ago