Multi Receipts Detector OCR Java
The Java OCR SDK supports the Multi Receipts Detector API.
Using the sample below, we are going to illustrate how to extract the data that we want using the OCR SDK.
Quick-Start
import com.mindee.MindeeClient;
import com.mindee.input.LocalInputSource;
import com.mindee.parsing.common.PredictResponse;
import com.mindee.product.multireceiptsdetector.MultiReceiptsDetectorV1;
import java.io.File;
import java.io.IOException;
public class SimpleMindeeClient {
public static void main(String[] args) throws IOException {
String apiKey = "my-api-key";
String filePath = "/path/to/the/file.ext";
// Init a new client
MindeeClient mindeeClient = new MindeeClient(apiKey);
// Load a file from disk
LocalInputSource inputSource = new LocalInputSource(filePath);
// Parse the file
PredictResponse<MultiReceiptsDetectorV1> response = mindeeClient.parse(
MultiReceiptsDetectorV1.class,
inputSource
);
// Print a summary of the response
System.out.println(response.toString());
// Print a summary of the predictions
// System.out.println(response.getDocument().toString());
// Print the document-level predictions
// System.out.println(response.getDocument().getInference().getPrediction().toString());
// Print the page-level predictions
// response.getDocument().getInference().getPages().forEach(
// page -> System.out.println(page.toString())
// );
}
}
Output (RST):
########
Document
########
:Mindee ID: d7c5b25f-e0d3-4491-af54-6183afa1aaab
:Filename: default_sample.jpg
Inference
#########
:Product: mindee/multi_receipts_detector v1.0
:Rotation applied: Yes
Prediction
==========
:List of Receipts: Polygon with 4 points.
Polygon with 4 points.
Polygon with 4 points.
Polygon with 4 points.
Polygon with 4 points.
Polygon with 4 points.
Page Predictions
================
Page 0
------
:List of Receipts: Polygon with 4 points.
Polygon with 4 points.
Polygon with 4 points.
Polygon with 4 points.
Polygon with 4 points.
Polygon with 4 points.
Field Types
Standard Fields
These fields are generic and used in several products.
BaseField
Each prediction object contains a set of fields that inherit from the generic BaseField
class.
A typical BaseField
object will have the following attributes:
- confidence (
Double
): the confidence score of the field prediction. - boundingBox (
Polygon
): contains exactly 4 relative vertices (points) coordinates of a right rectangle containing the field in the document. - polygon (
Polygon
): contains the relative vertices coordinates (polygon
extendsList<Point>
) of a polygon containing the field in the image. - pageId (
Integer
): the ID of the page, alwaysnull
when at document-level.
Note: A
Point
simply refers to a List ofDouble
.
Aside from the previous attributes, all basic fields have access to a custom toString
method that can be used to print their value as a string.
PositionField
The position field PositionField
implements:
- boundingBox (
Polygon
): contains exactly 4 relative vertices (points) coordinates of a right rectangle containing the field in the document. - polygon (
Polygon
): contains the relative vertices coordinates (polygon
extendsList<Point>
) of a polygon containing the field in the image. - rectangle (
Polygon
): a polygon with four points that may be oriented (even beyond canvas). - quadrangle (
Polygon
): a free polygon made up of four points.
Attributes
The following fields are extracted for Multi Receipts Detector V1:
List of Receipts
receipts: Positions of the receipts on the document.
for (receiptsElem : result.getDocument().getInference().getPrediction().getReceipts())
{
System.out.println(receiptsElem.polygon);
System.out.println(receiptsElem.quadrangle);
System.out.println(receiptsElem.rectangle);
System.out.println(receiptsElem.boundingBox);
}
Questions?
Updated 6 months ago