Prediction
Prediction Endpoint
Prediction is the main endpoint of Mindee API to extract information from your document. Use the Prediction endpoint by selecting the API you want to use and upload your document. You will then receive JSON predictions at document level or even page level for the available fields.
URL
To make a prediction, select the document API <account_name>/<api_name>/<api_version>
where:
<account_name>
refers to the username or organization name of the account that created the API,<api_name>/<api_version>
refers to the name and selected version as described in API Documentation.
Then use the URL:
POST https://api.mindee.net/v1/products/<account_name>/<api_name>/<api_version>/predict
Off-the-shelf APIs
Mindee ready-to-use APIs are accessible on the account name mindee
. You can browse all of them in the API Store.
Off-the-shelf APIs use a major version convention. A new major version may not be fully backward compatible and bring new features and better performance.
Examples:
- Invoice:
mindee/invoices/v3
- Passport:
mindee/passport/v1
- Expense Receipt:
mindee/expense_receipts/v3
Custom APIs
When creating a custom document parsing API with the API Builder, you must train the API before making your first predictions. As the training is progressing, a new minor version is created for each new model deployed:
v1.0
- no model / no predictionsv1.1
- first modelv1.2
- second model- ... etc
Select the version
v1
to always have the latest and best model.Example:
bob/form_456/v1
Payload
The Prediction endpoint can handle three types of payload in order to send your document:
- a binary file
- a base64 encoded file
- a URL
See Document inputs for more information on supported files.
Send a Binary File
Use a multipart/form-data
encoding to send your document
Example:
curl -X POST
https://api.mindee.net/v1/products/<account_name>/<api_name>/<api_version>/predict
-H 'Authorization: Token my-token'
-F document=@/path/to/your/file.png
import requests
url = "https://api.mindee.net/v1/products/<account_name>/<api_name>/<api_version>/predict"
with open("/path/to/my/file", "rb") as myfile:
files = {"document": myfile}
headers = {"Authorization": "Token my-api-key-here"}
response = requests.post(url, files=files, headers=headers)
print(response.text)
using System;
using System.IO;
using System.Net.Http;
using System.Net.Http.Headers;
class Program
{
static void Main(string[] args)
{
var url = "https://api.mindee.net/v1/products/<account_name>/<api_name>/<api_version>/predict";
var filePath = @"/path/to/my/file";
var token = "my-api-key-here";
var file = File.OpenRead(filePath);
var streamContent = new StreamContent(file);
var imageContent = new ByteArrayContent(streamContent.ReadAsByteArrayAsync().Result);
imageContent.Headers.ContentType = MediaTypeHeaderValue.Parse("multipart/form-data");
var form = new MultipartFormDataContent();
form.Add(imageContent, "document", Path.GetFileName(filePath));
var httpClient = new HttpClient();
httpClient.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Token", token);
var response = httpClient.PostAsync(url, form).Result;
Console.WriteLine(response.Content.ReadAsStringAsync().Result);
}
}
The
@
in thecurl
command is very important as it tells curl that you aren’t passing a data but a file.
Send a Base64 Encoded File
Prepare a JSON payload:
{
"document": "/9j......"
}
Send your request with an application/json
encoding:
curl -X POST \
https://api.mindee.net/v1/products/<account_name>/<api_name>/<api_version>/predict \
-H 'Authorization: Token my-api-key-here' \
-H 'Content-Type: application/json' \
-d 'document="/9j..."'
Send a URL
Prepare a JSON payload:
{
"document": "https://mydomain.com/my_file.pdf"
}
Send your request with an application/json
encoding:
curl -X POST \
https://api.mindee.net/v1/products/<account_name>/<api_name>/<api_version>/predict \
-H 'Authorization: Token my-token' \
-H 'Content-Type: application/json' \
-d '{"document":"https://mydomain.com/my_file.pdf"}'
Only a public HTTPS URL is accepted.
JSON Response
See Endpoints for general description of Mindee's REST API response format.
Description
When calling the prediction endpoint, the parsed information from your documents can be found in the document
key.
{
"api_request": { .. },
"document": {
"id": "ac668055-e7db-48f2-b81f-e5ba9a6a6b8f",
"name": "myfile.pdf",
"n_pages": 2,
"inference": {
"started_at": "2021-03-24T09:14:27+00:00",
"finished_at": "2021-03-24T09:14:28+00:00",
"processing_time": 1.087,
"is_rotation_applied": true,
"extras": {},
"prediction": { .. },
"pages": [
{
"id": 0,
"orientation": {"value": 0},
"extras": {},
"prediction": { .. }
},
{
"id": 1,
"orientation": {"value": 0},
"extras": {},
"prediction": { .. }
}
]
}
}
}
Document
Describes the uploaded document
key | type | description |
---|---|---|
id | string | a unique identifier |
name | string | the filename |
n_pages | number | the number of pages |
inference | object | a JSON object with the content of your inference (prediction) |
Document > Inference
Contains the whole inference data (predictions)
key | type | description |
---|---|---|
started_at | string | the date & time the inference has started in ISO 8601 format |
finished_at | string | the date & time the inference was finished in ISO 8601 format |
processing_time | number | the request processing time in seconds |
is_rotation_applied | boolean or null | true: polygons are already rotated given the page orientation false: polygons are never rotated null: the API has no orientation information |
extras | object | a JSON object with document-level extras predictions |
prediction | object | a JSON object with the document-level API prediction |
pages | list[object] | a JSON object with the page-level inference data |
Document > Inference > Pages[ ]
Contains the page-level specific inference data (predictions)
key | type | description |
---|---|---|
id | number | the page index |
orientation.value | number | the clockwise rotation to apply to get the page upright Examples: 0, 90, 180, 270 |
extras | object | a JSON object with page-level extras predictions Example: the Cropper feature |
prediction | object | a JSON object with the page-level API prediction |
Prediction example
Each API can describe several fields within its prediction
object. Depending on the field properties, you will find values, a confidence score or polygons.
{
"prediction": {
"locale": {
"country": "CA",
"currency": "CAD",
"language": "en",
"value": "en-CA",
"confidence": 0.85
},
"date": {
"value": "2020-07-03",
"confidence": 0.99,
"polygon": [[0.273, 0.355], [0.289, 0.355], [0.289, 0.373], [0.273, 0.373]]
},
"total_incl": {
"value": 14.32,
"confidence": 0.98,
"polygon": [[0.581, 0.485], [0.696, 0.485], [0.696, 0.503], [0.581, 0.503]]
}
}
}
Success
To know more about your document parsing API response, especially the prediction object's structure, you can access the Documentation part of your API on Mindee's platform.
Questions?
Join our Slack
Updated 9 months ago